Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.03.23289472

ABSTRACT

Knowledge is limited as to how prior SARS-CoV-2 infection influences cellular and humoral immunity after booster-vaccination with bivalent BA.4/5-adapted mRNA-vaccines, and whether vaccine-induced immunity correlates with subsequent infection. In this observational study, individuals with prior infection (n=64) showed higher vaccine-induced anti-spike IgG antibodies and neutralizing titers, but the relative increase was significantly higher in non-infected individuals (n=63). In general, both groups showed higher neutralizing activity towards the parental strain than towards Omicron subvariants BA.1, BA.2 and BA.5. In contrast, CD4 or CD8 T-cell levels towards spike from the parental strain and the Omicron subvariants, and cytokine expression profiles were similar irrespective of prior infection. Breakthrough infections occurred more frequently among previously non-infected individuals, who had significantly lower vaccine-induced spike-specific neutralizing activity and CD4 T-cell levels. Thus, the magnitude of vaccine-induced neutralizing activity and specific CD4 T-cells after bivalent vaccination may serve as a correlate for protection in previously non-infected individuals.


Subject(s)
Infections , Breakthrough Pain , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.13.21258859

ABSTRACT

Heterologous priming with the ChAdOx1-nCoV-19 vector-vaccine followed by boosting with an mRNA-vaccine is currently recommended in Germany, although data on immunogenicity and reactogenicity are not available. Here we show that the heterologous regimen induced spike-specific IgG, neutralizing antibodies, and spike-specific CD4 T-cells, which were significantly more pronounced than after homologous vector boost, and higher or comparable in magnitude to the homologous mRNA regimens. Moreover, spike-specific CD8 T-cell levels after heterologous vaccination were significantly higher than after both homologous regimens. Cytokine expression profiling showed a predominance of polyfunctional T-cells expressing IFN{gamma}, TNF and IL-2 with subtle differences between regimens. Both recipients of the homologous vector-regimen and the heterologous vector/mRNA-combination were most affected by the priming vector-vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA-boosting. Taken together, heterologous vector-mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profile. This knowledge will have implications for future vaccine strategies.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.23.441188

ABSTRACT

INTRODUCTION: Hyperinflammation is frequently observed in patients with severe COVID-19. Inadequate and defective IFN type I responses against SARS-CoV-2, caused by autoantibodies in a proportion of patients, lead to severe courses. In addition, hyperactive responses of the humoral immune system have been described so far. RATIONALE: In the current study we investigated a possible role of neutralizing autoantibodies against anti-inflammatory mediators. Plasma from patients with severe and critical COVID-19 was screened by ELISA for antibodies against PGRN, IL-10, IL-18BP, IL-22BP and IL-1-RA. Autoantibodies were characterized and the antigens were analyzed for immunogenic alterations. RESULTS: PGRN-autoantibodies were detected with high titers in 11 of 30 (36.7%), and IL 1-RA-autoantibodies in 14 of 30 (46.7%) patients of a discovery cohort with severe to critical COVID-19. In a validation cohort of 41 patients with critical COVID-19 high-titered PGRN-Abs were detected in 12 (29.3%) and IL-1-RA-Abs in 19 of 41 patients (46.2%). PGRN-Abs and IL-1-RA-Abs belonged to IgM and several IgG subclasses. In separate cohorts with non-critical COVID-19, PGRN-Abs and IL-1-RA-Abs were detected significantly less frequently and at low titers. Neither PGRN- nor IL-1-RA-Abs were found in 40 healthy controls vaccinated against SARS-CoV-2. PGRN-Abs were not cross-reactive against SARS-CoV-2 structural proteins or against IL-1-RA. Plasma levels of both free PGRN and IL-1-RA were significantly decreased in autoantibody-positive patients compared to Ab-negative and non-COVID controls. Functionally, PGRN-Abs from patients reduced PGRN-dependent inhibition of TNF- signaling in vitro. The pSer81 hyperphosphorylated PGRN isoform was exclusively detected in patients with high-titer PGRN-Abs; likewise, a yet unidentified hyperphosphorylated IL-1-RA isoform was only found in patients with high-titer IL-1-RA-Abs. No autoantibodies against IL-10, IL-18BP or IL-22BP were found. CONCLUSION: To conclude, neutralizing autoantibodies to IL-1-RA and PGRN occur in a significant proportion of patients with critical COVID-19, with a concomitant decrease in circulating PGRN and IL-1-RA, which is indicative of a misdirected, proinflammatory autoimmune response. The break of self-tolerance is likely caused by atypical isoforms of both antigens due to hyperphosphorylation. It remains to be determined whether these secondary modifications are induced by the SARS-CoV-2-infection itself, or are preexisting and predispose for a critical course.


Subject(s)
Severe Acute Respiratory Syndrome , Frontotemporal Dementia , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.08.20148718

ABSTRACT

Patients infected with SARS-CoV-2 differ in the severity of disease. In this study, SARS-CoV-2 specific T-cells and antibodies were characterized in patients with different COVID-19 related disease severity. Despite severe lymphopenia affecting all major lymphocyte subpopulations, patients with severe disease mounted significantly higher levels of SARS-CoV-2 specific T-cells as compared to convalescent individuals. SARS-CoV-2 specific CD4 T-cells dominated over CD8 T-cells and closely correlated with the number of plasmablasts and SARS-CoV-2 specific IgA- and IgG-levels. Unlike in convalescents, SARS-CoV-2 specific T-cells in patients with severe disease showed marked alterations in phenotypical and functional properties, which also extended to CD4 and CD8 T-cells in general. Given the strong induction of specific immunity to control viral replication in patients with severe disease, the functionally altered phenotype may result from the need for contraction of specific and general immunity to counteract excessive immunopathology in the lung.


Subject(s)
COVID-19 , Lymphopenia
SELECTION OF CITATIONS
SEARCH DETAIL